8 research outputs found

    Finding the Gap:Neuromorphic Motion Vision in Cluttered Environments

    Get PDF
    Many animals meander in environments and avoid collisions. How the underlying neuronal machinery can yield robust behaviour in a variety of environments remains unclear. In the fly brain, motion-sensitive neurons indicate the presence of nearby objects and directional cues are integrated within an area known as the central complex. Such neuronal machinery, in contrast with the traditional stream-based approach to signal processing, uses an event-based approach, with events occurring when changes are sensed by the animal. Contrary to von Neumann computing architectures, event-based neuromorphic hardware is designed to process information in an asynchronous and distributed manner. Inspired by the fly brain, we model, for the first time, a neuromorphic closed-loop system mimicking essential behaviours observed in flying insects, such as meandering in clutter and gap crossing, which are highly relevant for autonomous vehicles. We implemented our system both in software and on neuromorphic hardware. While moving through an environment, our agent perceives changes in its surroundings and uses this information for collision avoidance. The agent's manoeuvres result from a closed action-perception loop implementing probabilistic decision-making processes. This loop-closure is thought to have driven the development of neural circuitry in biological agents since the Cambrian explosion. In the fundamental quest to understand neural computation in artificial agents, we come closer to understanding and modelling biological intelligence by closing the loop also in neuromorphic systems. As a closed-loop system, our system deepens our understanding of processing in neural networks and computations in biological and artificial systems. With these investigations, we aim to set the foundations for neuromorphic intelligence in the future, moving towards leveraging the full potential of neuromorphic systems.Comment: 7 main pages with two figures, including appendix 26 pages with 14 figure

    An Event-Based Digital Time Difference Encoder Model Implementation for Neuromorphic Systems

    Get PDF
    Neuromorphic systems are a viable alternative to conventional systems for real-time tasks with constrained resources. Their low power consumption, compact hardware realization, and low-latency response characteristics are the key ingredients of such systems. Furthermore, the event-based signal processing approach can be exploited for reducing the computational load and avoiding data loss due to its inherently sparse representation of sensed data and adaptive sampling time. In event-based systems, the information is commonly coded by the number of spikes within a specific temporal window. However, the temporal information of event-based signals can be difficult to extract when using rate coding. In this work, we present a novel digital implementation of the model, called time difference encoder (TDE), for temporal encoding on event-based signals, which translates the time difference between two consecutive input events into a burst of output events. The number of output events along with the time between them encodes the temporal information. The proposed model has been implemented as a digital circuit with a configurable time constant, allowing it to be used in a wide range of sensing tasks that require the encoding of the time difference between events, such as optical flow-based obstacle avoidance, sound source localization, and gas source localization. This proposed bioinspired model offers an alternative to the Jeffress model for the interaural time difference estimation, which is validated in this work with a sound source lateralization proof-of-concept system. The model was simulated and implemented on a field-programmable gate array (FPGA), requiring 122 slice registers of hardware resources and less than 1 mW of power consumption.Ministerio de Economía y Competitividad TEC2016-77785-P (COFNET)Agencia Estatal de Investigación PID2019-105556GB-C33/AEI/10.13039/501100011033 (MINDROB

    Closed-loop sound source localization in neuromorphic systems

    Get PDF
    Sound source localization (SSL) is used in various applications such as industrial noise-control, speech detection in mobile phones, speech enhancement in hearing aids and many more. Newest video conferencing setups use SSL. The position of a speaker is detected from the difference in the audio waves received by a microphone array. After detection the camera focuses onto the location of the speaker. The human brain is also able to detect the location of a speaker from auditory signals. It uses, among other cues, the difference in amplitude and arrival time of the sound wave at the two ears, called interaural level and time difference. However, the substrate and computational primitives of our brain are different from classical digital computing. Due to its low power consumption of around 20 W and its performance in real time the human brain has become a great source of inspiration for emerging technologies. One of these technologies is neuromorphic hardware which implements the fundamental principles of brain computing identified until today using complementary metal-oxide-semiconductor technologies and new devices. In this work we propose the first neuromorphic closed-loop robotic system that uses the interaural time difference for SSL in real time. Our system can successfully locate sound sources such as human speech. In a closed-loop experiment, the robotic platform turned immediately into the direction of the sound source with a turning velocity linearly proportional to the angle difference between sound source and binaural microphones. After this initial turn, the robotic platform remains at the direction of the sound source. Even though the system only uses very few resources of the available hardware, consumes around 1 W, and was only tuned by hand, meaning it does not contain any learning at all, it already reaches performances comparable to other neuromorphic approaches. The SSL system presented in this article brings us one step closer towards neuromorphic event-based systems for robotics and embodied computing

    Event-based eccentric motion detection exploiting time difference encoding

    Get PDF
    D'Angelo GV, Janotte E, Schoepe T, et al. Event-based eccentric motion detection exploiting time difference encoding. Frontiers in Neuroscience. 2020;14: 451.Attentional selectivity tends to follow events considered as interesting stimuli. Indeed, the motion of visual stimuli present in the environment attract our attention and allow us to react and interact with our surroundings. Extracting relevant motion information from the environment presents a challenge with regards to the high information content of the visual input. In this work we propose a novel integration between an eccentric down-sampling of the visual field, taking inspiration from the varying size of receptive fields (RFs) in the mammalian retina, and the Spiking Elementary Motion Detector (sEMD) model. We characterize the system functionality with simulated data and real world data collected with bio-inspired event driven cameras, successfully implementing motion detection along the four cardinal directions and diagonally

    Live Demonstration: Neuromorphic Sensory Integration for Combining Sound Source Localization and Collision Avoidance

    No full text
    Schoepe T, Gutierrez-Galan D, Dominguez-Morales JP, Jimenez-Fernandez A, Linares-Barranco A, Chicca E. Live Demonstration: Neuromorphic Sensory Integration for Combining Sound Source Localization and Collision Avoidance. Presented at the 2020 IEEE International Symposium on Circuits & Systems, Seville, Spain

    Neuromorphic Sensory Integration for Combining Sound Source Localization and Collision Avoidance

    No full text
    Schoepe T, Gutierrez-Galan D, Dominguez-Morales JP, Jimenez-Fernandez A, Linares-Barranco A, Chicca E. Neuromorphic Sensory Integration for Combining Sound Source Localization and Collision Avoidance. 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS). 2019:1-4

    An Event-Based Digital Time Difference Encoder Model Implementation for Neuromorphic Systems

    Get PDF
    Gutierrez-Galan D, Schoepe T, Dominguez-Morales JP, Jimenez-Fernandez A, Chicca E, Linares-Barranco A. An Event-Based Digital Time Difference Encoder Model Implementation for Neuromorphic Systems. IIEEE Transactions on Neural Networks and Learning Systems . 2021.Neuromorphic systems are a viable alternative to conventional systems for real-time tasks with constrained resources. Their low power consumption, compact hardware realization, and low-latency response characteristics are the key ingredients of such systems. Furthermore, the event-based signal processing approach can be exploited for reducing the computational load and avoiding data loss due to its inherently sparse representation of sensed data and adaptive sampling time. In event-based systems, the information is commonly coded by the number of spikes within a specific temporal window. However, the temporal information of event-based signals can be difficult to extract when using rate coding. In this work, we present a novel digital implementation of the model, called time difference encoder (TDE), for temporal encoding on event-based signals, which translates the time difference between two consecutive input events into a burst of output events. The number of output events along with the time between them encodes the temporal information. The proposed model has been implemented as a digital circuit with a configurable time constant, allowing it to be used in a wide range of sensing tasks that require the encoding of the time difference between events, such as optical flow-based obstacle avoidance, sound source localization, and gas source localization. This proposed bioinspired model offers an alternative to the Jeffress model for the interaural time difference estimation, which is validated in this work with a sound source lateralization proof-of-concept system. The model was simulated and implemented on a field-programmable gate array (FPGA), requiring 122 slice registers of hardware resources and less than 1 mW of power consumption

    Live Demonstration: Neuromorphic Sensory Integration for Combining Sound Source Localization and Collision Avoidance

    No full text
    The brain is able to solve complex tasks in real time by combining different sensory cues with previously acquired knowledge. Inspired by the brain, we designed a neuromorphicdemonstrator which combines auditory and visual input to find an obstacle free direction closest to the sound source. The system consists of two event-based sensors (the eDVS for vision and the NAS for audition) mounted onto a pan-tilt unit and a spiking neural network implemented on the SpiNNaker platform. By combining the different sensory information, the demonstrator is able to point at a sound source direction while avoiding obstacles in real tim
    corecore